Coloring Reduced Kneser Graphs

نویسندگان

  • Wei-Tian Li
  • Ko-Wei Lih
چکیده

The vertex set of a Kneser graph KG(m,n) consists of all n-subsets of the set [m] = {0, 1, . . . ,m − 1}. Two vertices are defined to be adjacent if they are disjoint as subsets. A subset of [m] is called 2stable if 2 ≤ |a − b| ≤ m − 2 for any distinct elements a and b in that subset. The reduced Kneser graph KG2(m,n) is the subgraph of KG(m,n) induced by vertices that are 2-stable subsets. We focus our study on the reduced Kneser graphs KG2(2n + 2, n). We achieve a complete analysis of its structure. From there, we derive that the circular chromatic number of KG2(2n + 2, n) is equal to its ordinary chromatic number, which is 4. A second application of the structural theorem shows that the chromatic index of KG2(2n + 2, n) is equal to its maximum degree except when n = 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fall Colorings of Kneser Graphs

A fall k-coloring of a graph G is a proper k-coloring of G such that each vertex of G sees all k colors on its closed neighborhood. In this note, we characterize all fall colorings of Kneser graphs of type KG(n, 2) for n ≥ 2 and study some fall colorings of KG(n,m) in some special cases and introduce some bounds for fall colorings of Kneser graphs.

متن کامل

A short proof for Chen's Alternative Kneser Coloring Lemma

We give a short proof for Chen’s Alternative Kneser Coloring Lemma. This leads to a short proof for the Johnson-Holroyd-Stahl conjecture that Kneser graphs have their circular chromatic numbers equal to their chromatic numbers.

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

Circular chromatic number of Kneser graphs

This paper proves that for any positive integer n, if m is large enough, then the reduced Kneser graph KG2(m, n) has its circular chromatic number equal its chromatic number. This answers a question of Lih and Liu [J. Graph Theory, 2002]. For Kneser graphs, we prove that if m ≥ 2n2(n − 1), then KG(m, n) has its circular chromatic number equal its chromatic number. This provides strong support f...

متن کامل

Colorful Subhypergraphs in Kneser Hypergraphs

Using a Zq-generalization of a theorem of Ky Fan, we extend to Kneser hypergraphs a theorem of Simonyi and Tardos that ensures the existence of multicolored complete bipartite graphs in any proper coloring of a Kneser graph. It allows to derive a lower bound for the local chromatic number of Kneser hypergraphs (using a natural definition of what can be the local chromatic number of a uniform hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003